

Extremely Durable Concrete using Methane Decarbonization Nanofiber Co-products with Hydrogen (EERE - Pipeline H₂)

Modular Processing of Flare Gas for Carbon Nanoproducts (NETL - Flare Gas)

Alan W. Weimer, PI, University of Colorado – Boulder (CU)
Mija H. Hubler, co-PI, University of Colorado – Boulder (CU)
Team Members: Forge Nano (FN), National Ready Mixed Concrete Association (NRMCA)
Project Vision

We are producing H_2 and a beneficial carbon nanofiber concrete additive from natural gas by chemical vapor deposition using a low-cost sacrificial and compatible catalyst support

Total Project Cost (mo)

EERE:	\$1.25 M (36)
NETL:	\$3.75 M (41)

The Concept and the Project Objectives

The Team

Alan Weimer (Chemical Engineering) PI **Kent Warren** Postdoctoral Fellow Jessica Hauck PhD Student **Robert Anderson Principal Engineering Scientist** Mija Hubler
(Civil Engineering)
co-Pl

Linfei Li
Postdoctoral Fellow

Boning Wang
PhD Student

EERE (Pipeline): In-situ Ambient Pressure ALD/CCVD Reactor

In-situ ALD/CCVD Reactor Constructed & Operated

Objective: Investigate particle atomic layer deposition (ALD) catalysis to control carbon nanofiber (CNF) & "sacrificial" catalyst properties for the CO₂-free production of hydrogen.

Pipeline Gas (EERE) Key Process Parameters			
Catalyst ALD fabrication	In-situ		
Catalyst Support	Fumed Silica		
Catalyst Metal	Monometallic (e.g, Fe, Ni, or Co)		
Pressure Range	Ambient		
Temperature Range	600 – 850°C		
Scale-up	Pipeline centralized process		
CNF application	High-performance concrete		

NETL (Flare Gas): Modular Skid Process Design and Construction

Flare Gas (NETL) Key Process Parameters			
Catalyst ALD fabrication	Ex-situ		
Catalyst Support	Silica fume		
Catalyst Metal	Bimetallic (e.g, Fe/Co, Ni/Co, Fe/Ni etc)		
Pressure Range	400 – 500 psig		
Temperature Range	600 – 850°C		
Scale-up	Modular process (1kg/hr)		
Carbon Nanoproduct Application	Ultra high- performance concrete		

EERE: XRM images and test results for HPC

Optimized HPC mix design (kg/m³)

	w/b	Cement	Water	Sand	SF	HRWR	Coarse aggregate	HPC requirements
Preliminary	0.29	487	155	676	47	11.22	1068	Meets strength
Optimized	0.29	487	155	676	47	11.22	1015	Meets strength & slump

Samples without CNFs

Samples with CNFs

Compressive test

Ponding test

Flexural test

O.3

O.0.25

O.0.25

O.0.05

O.

Ponding test results

The addition of carbon resulted in a strength increase of 2% for 28-day compressive strength, 32% for 28-day flexural toughness and 29% for 3-month chloride resistance.

NETL: SEM images of dispersion in UHPC-CNFs

Well dispersed commercial CNFs in UHPC

Commercial CNFs can be well dispersed in UHPC via selecting the most effective chemical surfactant and the optimized ultrasonic dispersion set up.

NETL: Permeability for UHPC with commercial CNFs

Wicking test

The magnitudes of the increment of the water & chloride resistance are up to 18% for 216-hour wicking test and 32% for 3-month ponding test, respectively.

Specimen	Description	
C1	Reference: UHPC only	
C2	UHPC-CNFs; HRWR:CNFs=5:1 for dispersion	
С3	UHPC-CNFs; HRWR:CNFs=10:1 for dispersion	

Ponding test

EERE Results: Preliminary Technoeconomic Analysis

Experimental Data to Inform Future TEA

- Catalyst Loading [g Fe/g catalyst]
- Carbon Loading [g CNF/g Fe]
- Reactor Conversion

Parameters

Hydrogen price: \$2/kg

NG cost: \$3/KSCF

IRR: 10%

Lifetime: 15 years

Estimated TDC: \$2B-4B

Cost of Capital: 8.5%

Results

CNF coated silica, price range:

\$2 - \$4 per kg

Pure CNF, price range:

\$10 - \$20 per kg

Pure CNF, current technology:

\$300 per kg (bulk)

NETL Results: Preliminary Technoeconomic Analysis

Experimental Data to Inform Future TEA

- Catalyst Loading [g Fe/g catalyst]
- Carbon Loading [g CNP/g Fe]
- Reactor Conversion

Parameters

NG cost: Free

IRR: 10%

Lifetime: 15 years

Estimated TDC: \$1M-2M

Cost of Capital: 8.5%

Results

CNF coated silica, price range:

\$2 - \$4 per kg

Pure CNF, price range:

\$10 - \$20 per kg

Pure CNF, current technology:

\$300 per kg (bulk)

Challenges and Technical Partnerships

	CNF/CNP Synthesis	Cement Mixing	CVD Reactor Scale-up	Technology Implementation
Risk	Silica support may be completely covered by CNFs, limiting anchoring in cement mix.	The produced CNFs/CNPs may not be easily homogenized with cement.	There are unforeseen risks with process scale-up.	There are challenges with updating industry standards for technology implementation of CNF/CNP additives.
Risk Reduction	Metal nanoparticles are deposited <i>in-situ</i> using ALD resulting in highly dispersed metal nanocatalysts. Laboratory investigations will allow for fine control of catalyst properties to optimize CNF/CNP coverage.	Methods to ensure dispersion have been investigated using detergents and anti-foam agents.	Collaborating with Forge Nano for skid design, construction, and operation enables early identification of scale- up risks.	NRMCA has linked the research team with relevant contacts and the co-PI is engaged in committees writing standards for implementation.

T2M / Potential Impact

T2M / Potential Impact

Chemical Engineering	Civil Engineering	Potential	
Scale-up Progress	Potential Levers	Impact	
 Modular unit operation expected 9/2022 – process will reach TRL 5 Modular unit findings to inform technoeconomic analysis 	 Establishing a specification for the carbon product that can be referenced for permitted use in concrete 	 Replace as much as 25% of H₂ produced in the US from steam methane reforming 	
Modular Unit (NETL) (~1 kg/hr product)	 Documenting the performance benefits for specific applications to designers that can permit the use of the product in concrete Developing guidance on use of product for concrete producers to incorporate product 	 Carbon fiber product sequestered in concrete improves service life of concrete structures Process scales up to address both pipeline and flare natural gas sources 	

T2M / Potential Impact

Indiana DOT completes first all-precast bridge replacement using carbon nanofiber

UHPC

Collaborations

Fund-Receiving Colla	aborator	Project Roles	
FORGE NANO	ForgeNano	Reactor/process design and technoeconomic analysis	
NRMCA® NATIONAL READY MIXED CONCRETE ASSOCIATION	National Ready Mixed Concrete Association (NRMCA)	Concrete materials, mix design, and consulting	

Acknowledgements

What questions do you have?